

a

b

MAT223H Linear Algebra I

Fall 2021

Week 1

1 0

0

0

0

1

0

0

1

SYSTEMS OF LINEAR EQUATIONS

Systems of Linear Equations and Elimination

A **linear equation** in the variables x_1, \dots, x_n is an equation that can be written in the form

 $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$

where b and the **coefficients** a_1, \dots, a_n are real or complex numbers, usually known in advance.

A **system of linear equations** (or a **linear system**) is a collection of one or more linear equations involving the same variables.

A **solution** of the system is a list (s_1, \dots, s_n) of numbers that makes each equation a true statement when the values s_1, \dots, s_n are substituted for x_1, \dots, x_n , respectively. The set of all possible solutions is called the **solution set** of the linear system.

PRACTICE QUESTIONS

1. Find the solution of the linear equation

$$2x_1 + 3x_2 = 9$$

$$x_1 - 2x_2 = 1$$

The Matrix Representation of a System of Linear Equations

The essential information of a linear system can be recorded compactly in a rectangular

array called a **matrix**. Given the system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

with the coefficients of each variable aligned in columns, the matrix

[1	-2	1]
0	2	-8
L5	0	-5

is called the coefficient matrix (or matrix of coefficients) of the system, and

[1	-2	1	0
0	2	-8	8
5	0	-5	10

is called the **augmented matrix** of the system.

Elementary Row Operation

- 1. (Scaling) Multiply all entries in a row by a nonzero constant.
- 2. (Interchange) Interchange two rows.
- 3. (Replacement) Replace one row by the sum of itself and a multiple of another row.

Row Echelon Form

A nonzero row or column in a matrix means a row or column that contains at least one nonzero entry. A **leading entry** of a row refers to the leftmost nonzero entry (in a nonzero row).

A rectangular matrix is in **echelon form** (or **row echelon form**) if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is in reduced echelon form

(or reduced row echelon form):

- 4. The leading entry in each nonzero row is 1.
- 5. Each leading 1 is the only nonzero entry in its column.

PRACTICE QUESTION

2. Indicate the following matrices are in row echelon form or reduced row echelon form or nothing.

(i)	[0 0 0	1 0 0	2 0 0	$\begin{bmatrix} -1 & 3 \\ 1 & 4 \\ 0 & 0 \end{bmatrix}$	(ii) $\begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$	1 0 0 0	0 1 0 0	0 0 1 0	$\begin{bmatrix} 1\\2\\1\\0\end{bmatrix}$	(iii)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	1 0 0	0 1 0	2 1 1 3 1 -	; 1
(iv)	$\begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$	0 0 0 0	1 0 0 0	$ \begin{bmatrix} 1 & 3 \\ 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix} $	(v) $\begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}$	0 0 1 0	1 0 0 0	0 0 1 0	$\begin{array}{ccc} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}$	(vi)	[0 [0	0 0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		
(vii)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 1 0	0 0 1	$ \begin{array}{ccc} 2 & 4 \\ -1 & 2 \\ 1 & 2 \end{array} $	(viii) $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	0 1 0	3 4 1	5 3 1	$ \begin{bmatrix} 10\\10\\2 \end{bmatrix} $	(ix)	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 1 0	$-5 \\ 1 \\ 0$	$\begin{bmatrix} 1\\4\\0\end{bmatrix}$	

Pivot Positions

A **pivot position** in a matrix A is a location in A that corresponds to a leading 1 in the reduced echelon form

of A. A **pivot column** is a column of A that contains a pivot position.

A **pivot** is a nonzero number in a pivot position that is used as needed to create zeros via row operations.

PRACTICE QUESTIONS

3. Find the solutions to the following system of linear equations using row reductions.

2x - y + z = 32x + 3y - 6z = -4-x - 2y + 5z = 4

Consistent Systems and Unique Solutions

A system of linear equation is said to be **consistent** if it has either one solution or infinitely many solutions; a system is **inconsistent** if it has no solution.

The variables corresponding to pivot columns in the matrix are called **basic variables**. The other variables, are called **free variables** where free means that you are free to choose any value for the variable.

Theorem

A linear system is consistence if and only if the rightmost column of the augmented matrix is not a pivot column. That is, if and only if an echelon form of the augmented matrix has no row of the form

 $[0 \cdots 0 b]$ with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique solution, when there are no

free variables, or (ii) infinitely many solutions, when there is at least one free variable.

PRACTICE QUESTIONS

- 4. How many free variable columns does each augmented matrix have?
 - a. $\begin{bmatrix} 1 & 8 & -8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - b. $\begin{bmatrix} 1 & 0 & | & 9 \\ 0 & 1 & | & -7 \\ 0 & 0 & | & 0 \end{bmatrix}$

c.
$$\begin{bmatrix} 1 & 3 & -6 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -9 \\ 0 \end{bmatrix}$$

5. The reduced row-echelon forms of the augmented matrices of four systems are given below. How many

solutions does each system have?

	[1	0	0]	
a.	0	1	1	
	Lo	0	0	

- b. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 14 \\ -12 \end{bmatrix}$
- c. $\begin{bmatrix} 1 & 0 & | & 19 \\ 0 & 1 & | & -6 \end{bmatrix}$
- $d. \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

(Winter 2019 TT1 Q2) Consider the system $\begin{cases} x_1 + 2x_2 - 3x_3 = b_1 \\ 2x_1 + 4x_2 - 6x_3 + x_4 = b_2 \\ 6x_1 + 13x_2 - 17x_3 + 4x_4 = b_3 \end{cases}$

In this problem you may use the fact that
$$\operatorname{rref}\left(\begin{bmatrix} 1 & 2 & -3 & 0 & -5 \\ 2 & 4 & -6 & 1 & -8 \\ 6 & 13 & -17 & 4 & -21 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & -5 & 0 & -7 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}.$$

(a) (2 points) Write the complete solution to the system when $b_1 = -5$, $b_2 = -8$, $b_3 = -21$. Express your answer in vector form.

(b) (2 points) Are there values of b_1 , b_2 , b_3 that make the system inconsistent? If so, given an example of such values. If not, explain why not.